XC5VLX85-1FF676I_XC5VSX35T-1FF665I导读
如图1所示,某些外部因素对功耗具有呈指数的影响;环境的微小变化即可造成预估功耗的重大变化。使用功耗估计工具虽难以达到精准,但仍然可以通过确认高功耗模块来为功耗优化提供极好的指导。功耗估计 功耗估计是低功耗设计中的一个关键步骤。虽然确定FPGA功耗的最准确方法是硬件测量,但功耗估计有助于确认高功耗模块,可用于在设计阶段早期制定功耗预算。
自从影像记录诞生以来,还原逼真世界的每一寸细节一直便是行业的终极追求。 然而事实上,人眼本身就是“奇迹的造物”,可以通过瞳孔的放大缩小感知方寸之间的每一处亮部和暗部,而现实世界则跟随自然的照度不同拥有不同的亮部与暗部细节。影响图像质量包括分辨率、位深度、帧速率、色域、亮度五个要素,近年来4K/8K 60Hz/120Hz的显示面板逐渐被人耳熟能详,伴随着分辨率、位深度、帧速率升级,色域和亮度也被提出新的要求。
XC5VLX85-1FF676I_XC5VSX35T-1FF665I
XC5VSX50T-1FF1136C
动态功耗问题则用低电路和定制模块来解决。DSP模块中乘法器的功耗不到FPGA架构所构建乘法器的20%。鉴于制造偏差可导致漏电流分布范围很大,可筛选出低漏电流器件,以有效提供核心漏电功耗低于60%的器件。为了减少静态功耗,还全面采用了较长沟道和较高阈值的晶体管。FPGA的设计中使用了多种功耗驱动的设计技术。以Xilinx Virtex系列为例,因为配置存储单元可占到FPGA中晶体管数的1/3,所以在该系列中使用了一种低漏电流的“midox”晶体管来减少存储单元的漏电流。
Softnautics 采用了赛灵思 Vitis AI 堆栈并运用该软件提供加速,开发出混合应用,同时实现了 LSTM 功能,通过将 TensorFlow-lite 移植/迁移到 ARM 进行有效的序列预测。图像预处理/后处理通过 Vivado 使用 HLS 实现,而 Vitis 的作用是使用连接文本提议网络(CTPN)完成推断。它使用 N2Cube 软件在处理侧(PS)运行。最终,Softnautics 将该解决方案用于视频流水线中的实时场景文本检测,并使用可靠的数据集对模型进行改进。
。再加上大小写(大写/小写/全大全小/小型大写)、斜体(意大利体/罗马体)、缩放体(横向缩放)、粗细、指定大小(显示/文本)、波痕体、衬线(总体分为衬线体和无衬线体),这一数量可以扩充到数百万,使得文本识别成为机器学习领域中一个振奋人心的专业学科。随着人类语言书写形式的演进,已经发展出数千种独特的字体系。
随着人类语言书写形式的演进,已经发展出数千种独特的字体系。再加上大小写(大写/小写/全大全小/小型大写)、斜体(意大利体/罗马体)、缩放体(横向缩放)、粗细、指定大小(显示/文本)、波痕体、衬线(总体分为衬线体和无衬线体),这一数量可以扩充到数百万,使得文本识别成为机器学习领域中一个振奋人心的专业学科。
XC5VLX85-1FF676I_XC5VSX35T-1FF665I
XC5VTX240T-3FF1759C
XC6VLX130T-1FFG1156C XC6VLX130T-3FFG1156C XC6VLX195T-1FF1156C XC6VLX130T-3FF484C XC6VLX130T-3FFG484C XC6VLX130T-2FF484C XC5VTX240T-2FF1759I XC5VTX240T-2FFG1759C XC5VTX240T-2FFG1759I XC6VLX130T-1FFG484C XC6VLX130T-1FFG484I XC6VLX130T-1FFG784C XC6VLX130T-1FFG784I XC6VLX130T-1FF484C XC5VSX95T-3FF1136C XC5VSX95T-2FFG1136I XC5VTX240T-1FF1759C XC5VTX240T-3FF1759C XC5VTX240T-3FFG1759C XC6VLX130T-1FF1156C XC6VLX130T-1FF1156I 。
XC6VLX365T-3FFG1759C XC6VLX550T-1FF1760C XC6VLX550T-1FF1759I XC6VLX365T-3FF1156C XC6VLX550T-1FF1760I XC6VLX550T-1FFG1760C XC6VLX550T-1FFG1759I XC6VLX550T-1FF1759C XC6VLX240T-3FF1156C XC6VLX240T-2FFG1759I XC6VLX240T-2FFG1759C XC6VLX240T-1FFG1759I XC6VLX240T-1FFG1759C XC6VLX240T-1FFG1156I XC6VLX240T-1FFG1156C XC6VLX240T-2FF1759I XC6VLX195T-2FFG784C XC6VLX195T-3FF1156C XC6VLX195T-3FF784C XC6VLX240T-2FFG1156I XC6VLX240T-2FFG1156C XC6VLX240T-2FF784I XC6VLX240T-2FF784C XC6VLX240T-3FF1759C XC6VLX240T-1FF784C XC6VLX240T-1FF1759I XC6VLX195T-1FFG784C 。
XC6VLX130T-1FFG784C XC6VLX130T-1FFG784I XC6VLX130T-1FF484C XC5VSX95T-3FF1136C XC5VSX95T-2FFG1136I XC5VTX240T-1FF1759C XC5VTX240T-3FF1759C XC5VTX240T-3FFG1759C XC6VLX130T-1FF1156C XC6VLX130T-1FF1156I XC5VTX240T-2FF1759C XC5VTX240T-1FF1759I XC5VTX240T-1FFG1759C XC5VSX95T-3FFG1136C XC5VSX95T-1FFG1136C XC5VSX50T-3FFG665C XC5VSX95T-1FF1136C XC5VTX240T-1FFG1759I XC5VSX95T-2FFG1136C XC5VSX95T-1FFG1136I XC5VSX95T-2FF1136C XC5VSX95T-1FF1136I XC5VSX50T-2FF665C XC5VSX50T-2FFG665C XC5VSX50T-2FFG1136I XC5VSX95T-2FF1136I XC5VSX50T-3FFG1136C XC5VSX50T-2FFG665I XC5VSX50T-2FFG1136C XC5VSX50T-3FF665C XC5VSX50T-1FFG1136C XC5VSX50T-1FF1136I XC5VSX50T-3FF1136C XC5VSX50T-1FF665I XC5VSX50T-2FF1136C XC5VSX50T-1FFG1136I XC5VSX50T-1FF665C XC5VSX50T-1FFG665I XC5VSX35T-2FF665I XC5VSX35T-2FF665C 。
XC4VLX200-11FFG1513I XC4VLX200-12FF1513C XC4VLX200-12FFG1513C XC4VLX200-10FFG1513C XC4VLX200-10FFG1513I XC4VLX200-11FF1513C XC4VLX40-10FF1148I XC4VLX25-11FFG668C XC4VLX40-10FF668I XC4VLX40-10FF1148C XC4VLX25-12FFG668C XC4VLX40-10FF668C XC4VLX25-12SFG363C XC4VLX25-12FF668C XC4VLX25-11SF363I XC4VLX60-10FF1148I XC4VLX25-11SFG363I XC4VLX25-11SF363C XC4VLX25-11FF668I XC4VLX25-11SFG363C XC4VLX25-11FFG668I XC4VLX25-11FF668C XC4VLX160-10FFG1148I 。
XC5VLX85-1FF676I_XC5VSX35T-1FF665I
但是,CvMat更抽象,它的元素数据类型并不仅限于基础数据类型,而且可以是任意的预定义数据类型,比如RGB或者别的多通道数据。在openCV中,CvMat和IplImage类型更侧重于“图像”,尤其是对其中的图像操作进行一定程度的优化。OpenCV没有向量(vector)的数据结构,但当我们要表示向量时,需要用矩阵数据表示。
降低FPGA电源电压可使动态功耗呈二次函数下降,漏电功耗呈指数下降。例如,把温度从85℃升高至100℃可使漏电功耗增加25%。如图1所示,功耗很大程度上取决于电源电压和温度。升高温度可导致漏电功耗呈指数上升。