比例度与控制器的放大倍数的倒数成比例相应减小余差
发布时间:2022/11/18 12:48:21 访问次数:1473
单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍大些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选小一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。
比例控制器实际上就是个放大倍数可调的放大器,即△P=Kp×e,式中Kp为比例增益,即Kp可大于1,也可小于1;e为控制器的输入,也就是测量值与给定值之差,又称为偏差。
对于大多数模拟控制器而言,都不采用比例增益Kp作为刻度,而是用比例度来刻度,即δ=1/Kc×100%。也就是说比例度与控制器的放大倍数的倒数成比例;控制器的比例度越小,它的放大倍数越大,偏差放大的能力越大,反之亦然。
比例度(即比例带)越大,控制器的放大倍数越小,被控参数的曲线越平稳;比例度越小,控制器的放大倍数越大,被控参数的曲线越波动。
比例控制有个缺点,就是会产生余差,要克服余差就必须引入积分作用。
PID控制器可以用来控制任何可以被测量的并且可以被控制的变量。比如,它可以用来控制温度,压强,流量,化学成分,速度等等。汽车上的巡航定速功能就是一个例子。
PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。这三种算法是:
比例- 来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。那么它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。
来源:eechina.如涉版权请联系删除。图片供参考
单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍大些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选小一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。
比例控制器实际上就是个放大倍数可调的放大器,即△P=Kp×e,式中Kp为比例增益,即Kp可大于1,也可小于1;e为控制器的输入,也就是测量值与给定值之差,又称为偏差。
对于大多数模拟控制器而言,都不采用比例增益Kp作为刻度,而是用比例度来刻度,即δ=1/Kc×100%。也就是说比例度与控制器的放大倍数的倒数成比例;控制器的比例度越小,它的放大倍数越大,偏差放大的能力越大,反之亦然。
比例度(即比例带)越大,控制器的放大倍数越小,被控参数的曲线越平稳;比例度越小,控制器的放大倍数越大,被控参数的曲线越波动。
比例控制有个缺点,就是会产生余差,要克服余差就必须引入积分作用。
PID控制器可以用来控制任何可以被测量的并且可以被控制的变量。比如,它可以用来控制温度,压强,流量,化学成分,速度等等。汽车上的巡航定速功能就是一个例子。
PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。这三种算法是:
比例- 来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。那么它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。
来源:eechina.如涉版权请联系删除。图片供参考